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Anomalous diffusion of particles driven by correlated noise
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We study the effect of an arbitrary stationary random force on the motion of damped particles. Using a
Langevin description, we derive exact expressions for the dispersion of the particle position, of the particle
velocity, and their cross dispersion. The particles can exhibit anomalous diffusion, and the connection between
this behavior and the functional form of the noise correlations is investigated in detail. We also study anoma-
lous diffusion for the special cases of overdamped and undamped particles.

PACS numbds): 05.40—a, 05.10.Gg, 02.50.Ey

[. INTRODUCTION diffusive behavior. The Langevin method has mostly been
used to study anomalous diffusion of free particles without
Random processes play an important role in many fieldslissipation[27,30,31, with time-dependent frictiof34], and
of natural scienc¢l]. A wide class of such processes giveswith nonlocal dissipation, described by a generalized Lange-
rise to normal diffusion, where the mean-square displacevin equation with a friction memory kerng26,28,32,3%
ment o')z((t) increases linearly with for long times. Many Our aim is to show that ordinary Langevin dynamics can
processes, however, are characterized by anomalous diff@ccount for anomalous diffusion in nonequilibrium systems.
sion Wheregi(t)qv with v#1 [2—4]. Following the con- We study the statistical propgrties of damped particles gov-
ventional terminology, we will call the case>1 superdif- ~€rned by the equation of motion
fusion (diffusion faster than the normaénd the caser<1 . .
subdiffusion(diffusion slower than the normalSuperdiffu- mx(t) +Ax(t)=f(t), (1.1
sion is encountered, for example, in turbulent flJifls cha-
otic systemg6], layered velocity field§7], or rotating flows ~ where x(t) is the particle positionm is the mass of the
[8], and subdiffusion in disordered ionic chaifd, porous particle, and\ is a damping coefficient. The random force
systems10], amorphous semiconductor$1,12, or disor-  f(t) is stationary(in the wide sense has zero mean and the
dered materialg13]. Anomalous diffusion is often caused by arbitrary correlation function
memory effects and lwy-type statistic§2,3]. Specifically,
superdiffusion is observed for random walks with long-tail FOf)y=r(t=t'|)=r(u). 1.2
jump-length distributions, and subdiffusion for long-tail
waiting-time distributions. The latter type of distributions Since we focus on nonequilibrium systems where the driving
can be caused by “traps” that have an infinite mean waitingforce f(t) represents external noise, the damping coefficient
time [2]. \ and the correlations of the random force are not related to
Anomalous diffusion has been described by fractional dif-each other by a fluctuation-dissipation theorem. Our exact
fusion equationg14—17, nonlinear Fokker-Planck equa- results can easily be specialized to the case of internal equi-
tions [18—21], fractional Fokker-Planck equatiof@2—-25, librium fluctuations, and we comment on this fact in the
and different types of Langevin equatiof@6—34. The appropriate places. If(t) is Gaussian white noise, i.e.,
Langevin equation is an attractive starting point for the treat+ (u) ~ 6(u), where §(u) is the Dirac§ function, then Eq.
ment of diffusive behavior. It provides an equation of motion(1.1) describes the motion of so-called Rayleigh partiflds
for the particles and accounts for the dynamical origins ofwhich display normal diffusive behavior. Our main goal is to
diffusive motion. The classical Langevin equation describeslucidate how correlations of the noise affect the statistical
the regular diffusion of Brownian particl¢85]. The Lange- characteristics ok(t) and, specifically, what properties of
vin method is especially informative when those equations (u) are responsible for superdiffusive behaviox¢f), and
can be solved exactly. One can then represent the main chashich ones for subdiffusive behavior.
acteristics of the solutions by quadratures, find their long- The paper is organized as follows. In Sec. Il, we derive
time asymptotics, study their dependence on the statisticaxact expressions for the dispersion of the particle position,
characteristics of the driving noise, etc. The availability ofof the particle velocity, and their cross dispersion. Their
such analytical expressions is advantageous in that it prdeng-time asymptotics are obtained in Sec. Ill, where we also
vides exact relationships between the driving forces and thdiscuss the conditions for superdiffusion and subdiffusion
and consider the limits of undamped and overdamped par-
ticles. Two examples of specific correlation functions are
*Electronic address: denisov@ssu.sumy.ua studied in Sec. IV. Concluding remarks are contained in
TElectronic address: whorsthe@mail.smu.edu Sec. V.
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Il. GENERAL ANALYSIS

The Langevin equatiofil.1) with the initial conditions

x(0)=0, x(0)=0, (2.1
has the solution
e_'yt t " t”
X(t)= fdt”e’tJ’ dt’f(t"), (2.2
m Jo 0

where y=\/m. According to Eqs(2.2) and(1.2), the dis-
persion of the particle positiors2(t)=(x3(t)), is given by

e 2" 1t . [t ,
oi(t)=— J dt’e” f dijs(t”,tpe”s, (2.3
m= Jo 0
where
S(t”,t’1’)=ft dt'ftldtir(|t'—t1|). (2.4
0 0
Using the representatiaisee the Appendjx
S(t",t])=F({t")+F(t]) —F({t"—t}), (2.5
where
|2
F(z)=f dur(w[|z|—u], (2.6
0
we can rewrite Eq(2.3) in the form
e N—_g 27 ry —29t
2 _ 7 n yt”_
oy (1) Z—m)\ fodt F(t")e 7 G(1).
2.7
The functionG(t) is defined as
t t _—
G(t)=J dt”f dtjF(t"—t})ert 1), (2.9
0 0

With the transformation of variables=t'—t; andv=t’
+1t;, we can write it as follows:

2t—|u|

1 [t
G(t)=§ﬁtduF(u) ‘ dv e”

ul

=%JotduF(u)[e7(2‘“)—e7“]. (2.9

Substituting Eq.(2.9) into Eq. (2.7), we obtain the desired
expression

1 [t

(2.10

which is much simpler than Edq2.3).
According to Eq.(2.2), the particle velocity is given by
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: 1 [t

v(t)=x(t)=—yx(t)+ Ej dt’f(t’). (2.11
0

Its dispersiomf(t)z(kz(t» can then be written in the form

2 t
OB OE fodt’<f(t')x(t>>

1 ! ! ! 2

+F<(fodt f(t )) > (2.12

Using Eq.(2.10 and the relations

2
< Jotdt’f(t’)) >=2F(t), (2.13
t 1 [t
fodt’(f(t’)x(t))=EJOduF(u)[e‘V(“”)—e‘W]

1-e "

+ F(t), (2.19

A

which follow from Eqgs.(2.2) and(2.5), we obtain

t 2
o2 (t) = lJ duF(u)[e "—e "20]+  F(pe ",
m?Jo m?
(.19

Finally, for the cross dispersion between the particle po-
sition and the particle velocity, oy, (t)=(x(t)x(t))
=1/2da2(t)/dt, we find

1 [t
Ox(t)=— EJOdUF(U)[e At=u) g~ v(2t-u)]

1-e "
mA

F(t). (2.19

Note that for a Gaussian driving fordgt), the disper-
sionsa(t), o2(t), ando,(t) fully determine the probabil-
ity density of the particle positiop(x,t), of the particle
velocity p(v,t), and the joint probability density of andv,

p(x,v,t). In this casex(t) andx(t) are Gaussian processes
with zero mean, and

XZ

1
= - 2.
POx) V2ma(t) eXp< 2a§(t)) ’ 217

1)2

1
PO exp( 202(1)

0 ;{ Ug(t)XZ—ZO'XU(t)XU+0’§(t)l)2)
PO =ex 2L o2 a2(1)— 02, (1)]

) , (2.18

1

. 2.1
szoi(t)oﬁw—o—iv(t) 219
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These probability densities obey the initial conditionssimilar to the behavior of a harmonic oscillator having a
p(x,0)=46(x), p(v,0)=68(v), and p(x,v,0)=4(x)d(v), stiffness coefficient\?/m and interacting with a heat bath

which are equivalent to Ed2.1). having a temperaturd =F(«)/mkg. Equation(2.16 im-
plies that the values() andx(x) are not correlated, i.e.,
Ill. ASYMPTOTIC BEHAVIOR Oy ()=0.

In the second cas&,(«) =0, Eq.(2.10 leads to the fol-

A Damped particles (0<y<) lowing asymptotic formula:

The long-time behavior of2(t), o(t), and o,(t) de-
pends on certain properties of the noise correlation function 2
r(u). Equations(1.2), (2.3), and(2.13 imply thatr(0)=0, Ix
o2(t)=0, andF(u)=0. The conditiona2(t)=0 requires
that S(t”,t7)=0, which is the case if and only F(u) isa  The noise intensityR, defined ag36]
nondecreasing function ofi(=0), i.e., dF(u)/du=0 or w
Jodsr(s)=0, as can be seen from E€.5. Since F(0) R:f dur(u), (3.6
=0, the conditionF(u)=0 always holds for any nonde- 0
creasing functior(u). We assume that the correlations be- gayisfies the conditioR=0, which follows from the condi-
tween f(t) and f(t') decrease ast—t'[ increases. Thus ion F(u)=0. This parameter characterizes both the
r(=)=0, and the functiorF(u) increases slower than’, asymptotic behavior of (u) asu—o and the influence of

. . 2_ . .
e, lim,_.F(u)/u®=0. These properties imply that for regions of negative correlations for whicku)<0. Specifi-
damped particles the asymptotic behavior of the velocity d'sbally, the valueR=2 corresponds to the case of slowly de-

2
(t)NFF(t) as t—oo. (3.5

persion(2.19), att=c is given by creasing positive correlations, i.ef(u)— asu—o. The
. valueR=0 corresponds to the case where contributions from
05(00): lzf duF(u)e . (3.1) regions of positive and negative gorrglatioqs balance. From
m<=Jo Egs. (3.5 and(2.6) we obtain that(i) o¢(t) diverges faster

_ _ o _ _ thant but slower thart? if R=, that (i) o-2(t)~2Rt/\? if
The dispersion has a finite value that is proportional to thgy - R ang that(iii) o2(t) diverges slower than if R
.. 1 X

Laplace transform oF (u). If the random driving force cor-  _ s F(t) obeys a power lawF (t)~t”, superdiffusion
responds to internal equilibrium fluctuations, i.e.(u) takes place foR=%, normal diffusion for 6R<c, and
=2\kgTé(u) whereT is the absolute temperature akglis subdiffusion forR=0. The divergence afir(u) asu— is
the Boltzmann constant, then E§.1) Ieadzs, as e_xpected, 0 4 necessary, but not sufficient, condition for superdiffusion,
the law of equipartition of energy, i.emo,()/2=kgT/2. and a sign change af(u) is a necessary, but not sufficient,

The asymptotic behavior of the position dispersigf{t) condition for subdiffusion.
ast—oo, is governed by the asymptotic behaviorFofu) as
u—o. There are two qualitatively different cases, namely, B. Undamped particles(y=0)
0<F(») < andF(x)=w. [The casd-(«)=0 is not real-

ized] The first case requires that The position, velocity, and cross dispersion for undamped

particles are obtained from the general expressions in Sec. Il
u by taking the limity— 0. For the dispersion of the particle

f dsr(s)=o0(1/u) (u—»), (3.2 position, Eq.(2.10 yields
0

t
and Eq.(2.10 then implies thatri(t) tends to a finite limit g')z((t)z %f duF(u)u. (3.7
ast—oo; m=Jo

2 1 Since F(x)#0, a)z((t) always diverges as— for un-
g-i(oc):—F(oo)——f duF(u)e "\ (3.3 damped particles. I (<)<, which implies thatR=0,

\? mA Jo then o(t)~F()tm?, and if (=)=, then o(t) di-
verges faster tharf but slower thart®. In the latter case, Eq.

We call this phenomenon stochastic I_ocallza'glon, €., the(3_7) implies that(i) a)z((t) diverges faster that? but slower
mean-square displacement for free particles driven by corre[-

4 _ i 205\ __ 3 2
lated noise approaches a finite valué(oc)<oo, in the long- hant fo"r. R_zoo’ that (i) o(t) ~2RE/3m* for 0<R<OO§
time limit. As expected on physical grounds, E8.2) shows and that(iii) ax(t)'dlvergt.as fastgr thar?.but slpwer thart
that stochastic localization of particles is caused by negativéOr R=0. In particular, iff() is a white noise, i.er(u)

) . L =2A46(u), whereA is the white noise intensity, ther(u)
correlations in the random ford€t). Combining Eqs(3.1) . 2 Y 7 .
and (3.3, we obtain the relation =Au, and Eq.3.7) yields o (t) = 2At>/3m*, which is valid

for all times. If F(u) obeys a power lawF(u)~u” asu
1 122 1 —, then for undamped particles we havé(t)~t>"",
SMop(e)+5 —ol(®)= —F(=) (3.4 i v
219 2 m x m : : whereas for damped partlcleé(t)ﬂ . We suggest there-
fore that for undamped particles wid‘f(t) ~t7 ast—ox, the
The range of the particle localizatiom,(>), decreases as case »=3 should be called normal diffusion; the case 3
the damping coefficienk increases. If 8<F(<)<e, Eq. < p<4, superdiffusion; and the case<<3, subdiffu-
(3.4) reveals that the long-time behavior of a free particle ission.
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Since stochastic localization is the limiting case of subdiffu-ticles corresponds to the limig—c<. In this limit we can

sion, the casey=2 should also be called subdiffusion.
As A—0, Eq.(2.15 is reduced to

,o 2
o3ty = —F(). (3.8
m

Therefore ifF () <o0, the dispersion of the particle velocity
tends to a finite valueg?(«)=2F()/m?, ast—o. If
F(o0) =00, thenof(t) diverges as— . This means that the
average kinetic energy of the particE(t)zmaﬁ(t)/Z, in-
creases. The random driving fordét) leads to stochastic

simplify the integral in Eq.(2.10 using Laplace’s method
[38]. Taking into account thaF(0)=0 andF(«)+#0, we
obtain

) 2
O'X(t)~FF(t) as y—o, (3.9

Note that this formula is valid for all times, and it can be
obtained directly from the equation of motion for over-
damped particlesax(t)=f(t). Comparing Eqs(3.9) and

(3.5), we find that the long-time behavior of the dispersion of

acceleration of the particle. In particular, for white noise, Eq.the particle position is the same for damped and overdamped
(3.9) yieldsE(t) = At/m, which is known as Fermi accelera- particles, if and only ifF () =0,

tion [37]. If F(t), and consequentlfz(t), obeys a power
law, E(t)~t” ast—o, then 1<v<2 for R=w, v=1 for
0<R<®, and 0<v<1 for R=0. The slower the noise cor-
relation functionr(u) decreases witlu, the more effective
the stochastic acceleration.

Finally, for undamped particles, E.16) yields o, (t)
=F(t)t/m?, and this quantity always diverges s .

IV. TWO EXAMPLES OF RANDOM DRIVING FORCES

To illustrate the results obtained in the preceding section,
we consider first a class of random ford€s) characterized
by the correlation function

—a

r(u)y=r(0) with «>0. (4.

u

14—
C. Overdamped particles(y= ) 70
For modeling purposes, it is often assumed that the dampeor random forces in this class, we find i 0. Specifi-

ing coefficient\ is very large, so that the acceleratift) cally, R=x if 0<a=<1 and 0<KR<x if a>1. Straightfor-
becomes negligible. This approximation of overdamped parward calculations yield

( a ! +1,2
—_— | 1+ — — |1+ —=|+=— ,
(1-a)(2—a) 1 To l-«a 1 To i

Fu=r(0)2x{ |1+ —|in[ 14 —|- = =1 (4.2
(u)=r(0)7 - S e -

u u
" f1ed), o

\ 70 70

SinceF () = for all «, the long-time behavior er)z(('[), both for damped and overdamped particles, is given by(Eg).
Using Eq.(4.2), we find

( 1 )2«
— , O0<a<l
(1-a)(2—a)\ 7
2r(0)73 t ot
o(t)~ = X 4 T—OInT—O, a=1 4.3
\m 0, a>1

For the class of random forces with correlation function Eql), there are three different regimes$) superdiffusion, if O
<a<1, (ii) power-logarithmic diffusior[af(t)~t"lnt], if =1, and(iii) normal diffusion, ifa>1. It is remarkable that for
a=1 the mean-square displacement growslag, i.e., faster than normal diffusion but slower than superdiffusion. The same
behavior was found if33] for free particles with nonlocal dissipation. For undamped particles, (8g8.and(4.2) also lead

to three regimes as—®
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( 1 t 4—a
(1_0)(2—0()(4—@(7-_0) , 0<a<1

, . 2r(0)7g 1<t)3t

oy (t)~ 2 X 3\ 7 InT_o’ a=1 (4.9
1 t)2
\ 3<a—1)(70) ek

As mentioned above, the mean-square displacement gtovisnes faster than for damped particles. According to the
terminology suggested in Sec. lll, the cas&&<1 corresponds to superdiffusion, the case 1l to power-logarithmic
diffusion, and the case>1 to normal diffusion. Note that the average kinetic energy of undamped particles grdu(s)as
~(N?/2m) (1) ast—o= whereo?(t) is given by Eq.(4.3.

Next we consider a class of random fordés) characterized by the correlation function

u\ 8 u
r(u)=r(0)| 1+ — (1—(/3—2)—) with 8>2, (4.5
70 7o
for which the conditionrR=0 holds. In this case,
1 u\3-# 1 u\2-#
, ﬁ 1+T_0) —1—m(1+7—0 -1, B?':3
F(u)=r(0)5x u . (4.6)
In| 1+ —|+|1+—| -1, B=3,
70 70
and Eqgs.(3.3) and(3.5) yield
(1 (t)\3F
33 7'_0 , 2<B<3
2r(0)75 t
2 ~ | —— =
ot 2 X 4 InTO, B=3 4.7
Gﬁfs(YTo) _6572(77'0) £>3
L 2(8—3) 2(p—2) ’

whereG,(y)=1+¢&'y’I'(1-0,y) and F(l—o,y)=f§fdze‘zz“’ is the incomplete gamma function. This class of random
forces also gives rise to three different regimes for the long-time behavior of the mean-square displacement of damped
particles: (i) subdiffusion, if 2<B<3, (ii) logarithmic diffusion, if =3, and (iii) stochastic localization, if3>3. For
overdamped particles in the regime of stochastic localization we &fre) = 2r (0) 73/\?(3—2)(B—3), and for undamped
particles we obtain

( 1 t)>#
<3—ﬁ><5—ﬁ>(70)  ZSp<3
2r(0) 7y 1/t\2 t
2 _
O'X(t)"‘ oz X < E(T_o) |n7_—0, B=3 (4.8
- (L)z -3
 206-2)(8-3) | * P>

The cases 2 <3 and >3 correspond to subdiffusion, persion. On the basis of those results, we have studied in
and the cas@=3, to power-logarithmic diffusion. detail the influence of noise correlations on the character of
particle diffusion. The relevant parameter to characterize the
influence of the noise correlations is the noise intenBity
i.e., the integral of the correlation functiait).

We have used the Langevin approach to describe free We have shown that the conditiondR<<> corresponds
damped particles driven by an arbitrary stationary noise antb normal diffusion, and the conditiori&= andR=0 cor-
to obtain exact analytical results for the dispersion of therespond to anomalous diffusion. R=oc, diffusion is faster
particle position, of the particle velocity, and their cross dis-than normal diffusion, and iR=0 it is slower. The spectral

V. CONCLUSIONS
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density S(w) of the (wide-sensg stationary random force APPENDIX: DERIVATION OF EQ. (2.5

f(t) is given by By introducing the variables=t"—t7] andv =t"+t7, we

can write Eq.(2.4) for t"=t] as

S(w)= j:e_i“"r(t)dtzZJ:r(t)cos(wt)dt. (5.2

0 "

St ) = %f olur(u)f2t My
Therefore,S(0)=2R, and external noise with very strong ty —u
coherenceS(w)—> asw—0, gives rise to diffusion faster . ,
than normal, whereas external noise with very weak coher- + %fthtldu r(u)f2t1+udv
ence,S(w)—0 asw—0, leads to diffusion slower than nor- 0 u
mal. In the case of fast diffusion, @as-«, the mean-square , ,
displacemeni(t) grows faster than but slower thart?, + %ft du r(u)fm M (A1)
and in the case of slow diffusion slower tharnThe condi- t—t] u
tionsR=«~ andR=0 are necessary but not sufficient for the
existence of superdiffusion and subdiffusion, respectively. _ [t " =t} "
Specifically, forR=c power-logarithmic diffusion can oc- - J; dur(u)(ty—u)+ fo dur(uty
cur and forR= 0 logarithmic diffusion. Our results show that
a long time-tail decay of positive correlations of the noise t n_
gives rise to fast diffusion, and a balance of contributions +J' qdu SO (A2)
from regions of positive and negative correlations to slow
diffusion. Also, if R=0, stochastic localization of particles ¢ , t ,
can occur, wherer2(t) is finite for all times. = fo dur(u)(ti—u)+ fo dur(u)(t"—u)

For undamped particles, diffusion 8 times faster than
; i 13 _ 0o
frgrsdamped partlcles._ The_: condltlofﬁ(t) t ast_—>oo cor y _f 4y F(U) (=t~ ). (A3)
ponds to normal diffusion of undamped particles. Fast dif 0

fusion occurs ifR=c0, and slow diffusion ifR=0, as in the
case of damped particles. The dispers‘mﬁ(t), ast—oo, Taking into account the definitio(2.6), we obtain Eq(2.5
grows faster tham® but slower thart* for fast diffusion, and  from Eq.(A3). Equation(2.5) also holds fot”<t], since we
faster thart? but slower thart® for slow diffusion. haveS(t",t]) =S(t7,t”) according to Eq(2.4).
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