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Anomalous diffusion of particles driven by correlated noise
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We study the effect of an arbitrary stationary random force on the motion of damped particles. Using a
Langevin description, we derive exact expressions for the dispersion of the particle position, of the particle
velocity, and their cross dispersion. The particles can exhibit anomalous diffusion, and the connection between
this behavior and the functional form of the noise correlations is investigated in detail. We also study anoma-
lous diffusion for the special cases of overdamped and undamped particles.

PACS number~s!: 05.40.2a, 05.10.Gg, 02.50.Ey
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I. INTRODUCTION

Random processes play an important role in many fie
of natural science@1#. A wide class of such processes giv
rise to normal diffusion, where the mean-square displa
ment sx

2(t) increases linearly witht for long times. Many
processes, however, are characterized by anomalous d
sion wheresx

2(t);tn with nÞ1 @2–4#. Following the con-
ventional terminology, we will call the casen.1 superdif-
fusion ~diffusion faster than the normal! and the casen,1
subdiffusion~diffusion slower than the normal!. Superdiffu-
sion is encountered, for example, in turbulent fluids@5#, cha-
otic systems@6#, layered velocity fields@7#, or rotating flows
@8#, and subdiffusion in disordered ionic chains@9#, porous
systems@10#, amorphous semiconductors@11,12#, or disor-
dered materials@13#. Anomalous diffusion is often caused b
memory effects and Le´vy-type statistics@2,3#. Specifically,
superdiffusion is observed for random walks with long-t
jump-length distributions, and subdiffusion for long-ta
waiting-time distributions. The latter type of distribution
can be caused by ‘‘traps’’ that have an infinite mean wait
time @2#.

Anomalous diffusion has been described by fractional d
fusion equations@14–17#, nonlinear Fokker-Planck equa
tions @18–21#, fractional Fokker-Planck equations@22–25#,
and different types of Langevin equations@26–34#. The
Langevin equation is an attractive starting point for the tre
ment of diffusive behavior. It provides an equation of moti
for the particles and accounts for the dynamical origins
diffusive motion. The classical Langevin equation describ
the regular diffusion of Brownian particles@35#. The Lange-
vin method is especially informative when those equatio
can be solved exactly. One can then represent the main c
acteristics of the solutions by quadratures, find their lo
time asymptotics, study their dependence on the statis
characteristics of the driving noise, etc. The availability
such analytical expressions is advantageous in that it
vides exact relationships between the driving forces and
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diffusive behavior. The Langevin method has mostly be
used to study anomalous diffusion of free particles witho
dissipation@27,30,31#, with time-dependent friction@34#, and
with nonlocal dissipation, described by a generalized Lan
vin equation with a friction memory kernel@26,28,32,33#.

Our aim is to show that ordinary Langevin dynamics c
account for anomalous diffusion in nonequilibrium system
We study the statistical properties of damped particles g
erned by the equation of motion

mẍ~ t !1l ẋ~ t !5 f ~ t !, ~1.1!

where x(t) is the particle position,m is the mass of the
particle, andl is a damping coefficient. The random forc
f (t) is stationary~in the wide sense!, has zero mean and th
arbitrary correlation function

^ f ~ t ! f ~ t8!&5r ~ ut2t8u!5r ~u!. ~1.2!

Since we focus on nonequilibrium systems where the driv
force f (t) represents external noise, the damping coeffici
l and the correlations of the random force are not related
each other by a fluctuation-dissipation theorem. Our ex
results can easily be specialized to the case of internal e
librium fluctuations, and we comment on this fact in th
appropriate places. Iff (t) is Gaussian white noise, i.e
r (u);d(u), whered(u) is the Diracd function, then Eq.
~1.1! describes the motion of so-called Rayleigh particles@1#,
which display normal diffusive behavior. Our main goal is
elucidate how correlations of the noise affect the statist
characteristics ofx(t) and, specifically, what properties o
r (u) are responsible for superdiffusive behavior ofx(t), and
which ones for subdiffusive behavior.

The paper is organized as follows. In Sec. II, we der
exact expressions for the dispersion of the particle posit
of the particle velocity, and their cross dispersion. Th
long-time asymptotics are obtained in Sec. III, where we a
discuss the conditions for superdiffusion and subdiffus
and consider the limits of undamped and overdamped
ticles. Two examples of specific correlation functions a
studied in Sec. IV. Concluding remarks are contained
Sec. V.
7729 ©2000 The American Physical Society
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II. GENERAL ANALYSIS

The Langevin equation~1.1! with the initial conditions

x~0!50, ẋ~0!50, ~2.1!

has the solution

x~ t !5
e2gt

m E
0

t

dt9egt9E
0

t9
dt8 f ~ t8!, ~2.2!

whereg5l/m. According to Eqs.~2.2! and ~1.2!, the dis-
persion of the particle position,sx

2(t)5^x2(t)&, is given by

sx
2~ t !5

e22gt

m2 E
0

t

dt9egt9E
0

t

dt19S~ t9,t19!egt19, ~2.3!

where

S~ t9,t19!5E
0

t9
dt8E

0

t19dt18r ~ ut82t18u!. ~2.4!

Using the representation~see the Appendix!

S~ t9,t19!5F~ t9!1F~ t19!2F~ t92t19!, ~2.5!

where

F~z!5E
0

uzu
du r~u!@ uzu2u#, ~2.6!

we can rewrite Eq.~2.3! in the form

sx
2~ t !52

e2gt2e22gt

ml E
0

t

dt9F~ t9!egt92
e22gt

m2
G~ t !.

~2.7!

The functionG(t) is defined as

G~ t !5E
0

t

dt9E
0

t

dt19F~ t92t19!eg(t91t19). ~2.8!

With the transformation of variablesu5t82t18 and v5t8
1t18 , we can write it as follows:

G~ t !5
1

2E2t

t

duF~u!E
uuu

2t2uuu
dv egv

5
1

gE0

t

duF~u!@eg(2t2u)2egu#. ~2.9!

Substituting Eq.~2.9! into Eq. ~2.7!, we obtain the desired
expression

sx
2~ t !5

1

mlE0

t

duF~u!@2e2g(t2u)2e2g(2t2u)2e2gu#,

~2.10!

which is much simpler than Eq.~2.3!.
According to Eq.~2.2!, the particle velocity is given by
v~ t !5 ẋ~ t !52gx~ t !1
1

mE
0

t

dt8 f ~ t8!. ~2.11!

Its dispersionsv
2(t)5^ ẋ2(t)& can then be written in the form

sv
2~ t !5g2sx

2~ t !2
2g

m E
0

t

dt8^ f ~ t8!x~ t !&

1
1

m2 K S E
0

t

dt8 f ~ t8! D 2L . ~2.12!

Using Eq.~2.10! and the relations

K S E
0

t

dt8 f ~ t8! D 2L 52F~ t !, ~2.13!

E
0

t

dt8^ f ~ t8!x~ t !&5
1

mE
0

t

duF~u!@e2g(t2u)2e2gu#

1
12e2gt

l
F~ t !, ~2.14!

which follow from Eqs.~2.2! and ~2.5!, we obtain

sv
2~ t !5

g

m2E0

t

duF~u!@e2gu2e2g(2t2u)#1
2

m2
F~ t !e2gt.

~2.15!

Finally, for the cross dispersion between the particle p
sition and the particle velocity, sxv(t)5^x(t) ẋ(t)&
51/2dsx

2(t)/dt, we find

sxv~ t !52
1

m2E0

t

duF~u!@e2g(t2u)2e2g(2t2u)#

1
12e2gt

ml
F~ t !. ~2.16!

Note that for a Gaussian driving forcef (t), the disper-
sionssx

2(t), sv
2(t), andsxv(t) fully determine the probabil-

ity density of the particle positionp(x,t), of the particle
velocity p(v,t), and the joint probability density ofx andv,
p(x,v,t). In this case,x(t) and ẋ(t) are Gaussian processe
with zero mean, and

p~x,t !5
1

A2psx~ t !
expS 2

x2

2sx
2~ t !

D , ~2.17!

p~v,t !5
1

A2psv~ t !
expS 2

v2

2sv
2~ t !

D , ~2.18!

p~x,v,t !5expS 2
sv

2~ t !x222sxv~ t !xv1sx
2~ t !v2

2@sx
2~ t !sv

2~ t !2sxv
2 ~ t !#

D
3

1

2pAsx
2~ t !sv

2~ t !2sxv
2 ~ t !

. ~2.19!
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These probability densities obey the initial conditio
p(x,0)5d(x), p(v,0)5d(v), and p(x,v,0)5d(x)d(v),
which are equivalent to Eq.~2.1!.

III. ASYMPTOTIC BEHAVIOR

A. Damped particles „0ËgË`…

The long-time behavior ofsx
2(t), sv

2(t), andsxv(t) de-
pends on certain properties of the noise correlation func
r (u). Equations~1.2!, ~2.3!, and~2.13! imply that r (0)>0,
sx

2(t)>0, and F(u)>0. The conditionsx
2(t)>0 requires

that S(t9,t19)>0, which is the case if and only ifF(u) is a
nondecreasing function ofu(>0), i.e., dF(u)/du>0 or
*0

uds r(s)>0, as can be seen from Eq.~2.5!. Since F(0)
50, the conditionF(u)>0 always holds for any nonde
creasing functionF(u). We assume that the correlations b
tween f (t) and f (t8) decrease asut2t8u increases. Thus
r (`)50, and the functionF(u) increases slower thanu2,
i.e., limu→`F(u)/u250. These properties imply that fo
damped particles the asymptotic behavior of the velocity d
persion~2.15!, at t5` is given by

sv
2~`!5

g

m2E0

`

duF~u!e2gu. ~3.1!

The dispersion has a finite value that is proportional to
Laplace transform ofF(u). If the random driving force cor-
responds to internal equilibrium fluctuations, i.e.,r (u)
52lkBTd(u) whereT is the absolute temperature andkB is
the Boltzmann constant, then Eq.~3.1! leads, as expected, t
the law of equipartition of energy, i.e.,msv

2(`)/25kBT/2.
The asymptotic behavior of the position dispersionsx

2(t)
ast→`, is governed by the asymptotic behavior ofF(u) as
u→`. There are two qualitatively different cases, name
0,F(`),` andF(`)5`. @The caseF(`)50 is not real-
ized.# The first case requires that

E
0

u

ds r~s!5o~1/u! ~u→`!, ~3.2!

and Eq.~2.10! then implies thatsx
2(t) tends to a finite limit

as t→`:

sx
2~`!5

2

l2
F~`!2

1

mlE0

`

duF~u!e2gu. ~3.3!

We call this phenomenon stochastic localization, i.e.,
mean-square displacement for free particles driven by co
lated noise approaches a finite value,sx

2(`),`, in the long-
time limit. As expected on physical grounds, Eq.~3.2! shows
that stochastic localization of particles is caused by nega
correlations in the random forcef (t). Combining Eqs.~3.1!
and ~3.3!, we obtain the relation

1

2
msv

2~`!1
1

2

l2

m
sx

2~`!5
1

m
F~`!. ~3.4!

The range of the particle localization,sx(`), decreases a
the damping coefficientl increases. If 0,F(`),`, Eq.
~3.4! reveals that the long-time behavior of a free particle
n

-

-

e

,

e
e-

e

s

similar to the behavior of a harmonic oscillator having
stiffness coefficientl2/m and interacting with a heat bat
having a temperatureT5F(`)/mkB . Equation~2.16! im-
plies that the valuesx(`) and ẋ(`) are not correlated, i.e.
sxv(`)50.

In the second case,F(`)5`, Eq. ~2.10! leads to the fol-
lowing asymptotic formula:

sx
2~ t !;

2

l2
F~ t ! as t→`. ~3.5!

The noise intensityR, defined as@36#

R5E
0

`

du r~u!, ~3.6!

satisfies the conditionR>0, which follows from the condi-
tion F(u)>0. This parameter characterizes both t
asymptotic behavior ofr (u) as u→` and the influence of
regions of negative correlations for whichr (u),0. Specifi-
cally, the valueR5` corresponds to the case of slowly d
creasing positive correlations, i.e.,ur(u)→` asu→`. The
valueR50 corresponds to the case where contributions fr
regions of positive and negative correlations balance. Fr
Eqs. ~3.5! and ~2.6! we obtain that~i! sx

2(t) diverges faster
thant but slower thant2 if R5`, that ~ii ! sx

2(t);2Rt/l2 if
0,R,`, and that~iii ! sx

2(t) diverges slower thant if R
50. If F(t) obeys a power law,F(t);tn, superdiffusion
takes place forR5`, normal diffusion for 0,R,`, and
subdiffusion forR50. The divergence ofur(u) asu→` is
a necessary, but not sufficient, condition for superdiffusi
and a sign change ofr (u) is a necessary, but not sufficien
condition for subdiffusion.

B. Undamped particles„gÄ0…

The position, velocity, and cross dispersion for undamp
particles are obtained from the general expressions in Se
by taking the limitg→0. For the dispersion of the particl
position, Eq.~2.10! yields

sx
2~ t !5

2

m2E0

t

duF~u!u. ~3.7!

Since F(`)Þ0, sx
2(t) always diverges ast→` for un-

damped particles. IfF(`),`, which implies thatR50,
then sx

2(t);F(`)t2/m2, and if F(`)5`, then sx
2(t) di-

verges faster thant2 but slower thant4. In the latter case, Eq
~3.7! implies that~i! sx

2(t) diverges faster thant3 but slower
than t4 for R5`, that ~ii ! sx

2(t);2Rt3/3m2 for 0,R,`,
and that~iii ! sx

2(t) diverges faster thant2 but slower thant3

for R50. In particular, if f (t) is a white noise, i.e,r (u)
52Dd(u), whereD is the white noise intensity, thenF(u)
5Du, and Eq.~3.7! yieldssx

2(t)52Dt3/3m2, which is valid
for all times. If F(u) obeys a power law,F(u);un as u
→`, then for undamped particles we havesx

2(t);t21n,
whereas for damped particlessx

2(t);tn. We suggest there
fore that for undamped particles withsx

2(t);th ast→`, the
caseh53 should be called normal diffusion; the case
,h,4, superdiffusion; and the case 2,h,3, subdiffu-
sion.
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Since stochastic localization is the limiting case of subdif
sion, the caseh52 should also be called subdiffusion.

As l→0, Eq. ~2.15! is reduced to

sv
2~ t !5

2

m2
F~ t !. ~3.8!

Therefore ifF(`),`, the dispersion of the particle velocity
tends to a finite value,sv

2(`)52F(`)/m2, as t→`. If
F(`)5`, thensv

2(t) diverges ast→`. This means that the
average kinetic energy of the particle,E(t)5msv

2(t)/2, in-
creases. The random driving forcef (t) leads to stochastic
acceleration of the particle. In particular, for white noise, E
~3.8! yieldsE(t)5Dt/m, which is known as Fermi accelera
tion @37#. If F(t), and consequentlyE(t), obeys a power
law, E(t);tn as t→`, then 1,n,2 for R5`, n51 for
0,R,`, and 0,n,1 for R50. The slower the noise cor
relation functionr (u) decreases withu, the more effective
the stochastic acceleration.

Finally, for undamped particles, Eq.~2.16! yields sxv(t)
5F(t)t/m2, and this quantity always diverges ast→`.

C. Overdamped particles„gÄ`…

For modeling purposes, it is often assumed that the da
ing coefficientl is very large, so that the accelerationẍ(t)
becomes negligible. This approximation of overdamped p
-

.

p-

r-

ticles corresponds to the limitg→`. In this limit we can
simplify the integral in Eq.~2.10! using Laplace’s method
@38#. Taking into account thatF(0)50 and F(`)Þ0, we
obtain

sx
2~ t !;

2

l2
F~ t ! as g→`. ~3.9!

Note that this formula is valid for all times, and it can b
obtained directly from the equation of motion for ove
damped particles,l ẋ(t)5 f (t). Comparing Eqs.~3.9! and
~3.5!, we find that the long-time behavior of the dispersion
the particle position is the same for damped and overdam
particles, if and only ifF(`)5`.

IV. TWO EXAMPLES OF RANDOM DRIVING FORCES

To illustrate the results obtained in the preceding secti
we consider first a class of random forcesf (t) characterized
by the correlation function

r ~u!5r ~0!S 11
u

t0
D 2a

with a.0. ~4.1!

For random forces in this class, we find thatRÞ0. Specifi-
cally, R5` if 0 ,a<1 and 0,R,` if a.1. Straightfor-
ward calculations yield
ame
F~u!5r ~0!t0
235

1

~12a!~22a! S 11
u

t0
D 22a

2
1

12a S 11
u

t0
D1

1

22a
, aÞ1,2

S 11
u

t0
D lnS 11

u

t0
D2

u

t0
, a51

u

t0
2 lnS 11

u

t0
D , a52.

~4.2!

SinceF(`)5` for all a, the long-time behavior ofsx
2(t), both for damped and overdamped particles, is given by Eq.~3.5!.

Using Eq.~4.2!, we find

sx
2~ t !;

2r ~0!t0
2

l2
35

1

~12a!~22a! S t

t0
D 22a

, 0,a,1

t

t0
ln

t

t0
, a51

1

a21

t

t0
, a.1.

~4.3!

For the class of random forces with correlation function Eq.~4.1!, there are three different regimes:~i! superdiffusion, if 0
,a,1, ~ii ! power-logarithmic diffusion@sx

2(t);tkln t#, if a51, and~iii ! normal diffusion, ifa.1. It is remarkable that for
a51 the mean-square displacement grows ast ln t, i.e., faster than normal diffusion but slower than superdiffusion. The s
behavior was found in@33# for free particles with nonlocal dissipation. For undamped particles, Eqs.~3.7! and~4.2! also lead
to three regimes ast→`
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sx
2~ t !;

2r ~0!t0
4

m2
35

1

~12a!~22a!~42a! S t

t0
D 42a

, 0,a,1

1

3 S t

t0
D 3

ln
t

t0
, a51

1

3~a21! S t

t0
D 3

, a.1.

~4.4!

As mentioned above, the mean-square displacement growst2 times faster than for damped particles. According to t
terminology suggested in Sec. III, the case 0,a,1 corresponds to superdiffusion, the casea51 to power-logarithmic
diffusion, and the casea.1 to normal diffusion. Note that the average kinetic energy of undamped particles grows asE(t)
;(l2/2m)sx

2(t) as t→` wheresx
2(t) is given by Eq.~4.3!.

Next we consider a class of random forcesf (t) characterized by the correlation function

r ~u!5r ~0!S 11
u

t0
D 2bS 12~b22!

u

t0
D with b.2, ~4.5!

for which the conditionR50 holds. In this case,

F~u!5r ~0!t0
23H 1

32b F S 11
u

t0
D 32b

21G2
1

22b F S 11
u

t0
D 22b

21G , bÞ3

lnS 11
u

t0
D1S 11

u

t0
D 21

21, b53,

~4.6!

and Eqs.~3.3! and ~3.5! yield

sx
2~ t !;

2r ~0!t0
2

l2
35

1

32b S t

t0
D 32b

, 2,b,3

ln
t

t0
, b53

Gb23~gt0!

2~b23!
2

Gb22~gt0!

2~b22!
, b.3,

~4.7!

whereGs(y)511eyysG(12s,y) andG(12s,y)5*y
`dze2zz2s is the incomplete gamma function. This class of rando

forces also gives rise to three different regimes for the long-time behavior of the mean-square displacement of
particles: ~i! subdiffusion, if 2,b,3, ~ii ! logarithmic diffusion, if b53, and ~iii ! stochastic localization, ifb.3. For
overdamped particles in the regime of stochastic localization we havesx

2(`)52r (0)t0
2/l2(b22)(b23), and for undamped

particles we obtain

sx
2~ t !;

2r ~0!t0
4

m2
35

1

~32b!~52b! S t

t0
D 52b

, 2,b,3

1

2 S t

t0
D 2

ln
t

t0
, b53

1

2~b22!~b23! S t

t0
D 2

, b.3.

~4.8!
,

fre
an
th
is

d in
r of
the

l

The cases 2,b,3 and b.3 correspond to subdiffusion
and the caseb53, to power-logarithmic diffusion.

V. CONCLUSIONS

We have used the Langevin approach to describe
damped particles driven by an arbitrary stationary noise
to obtain exact analytical results for the dispersion of
particle position, of the particle velocity, and their cross d
e
d

e
-

persion. On the basis of those results, we have studie
detail the influence of noise correlations on the characte
particle diffusion. The relevant parameter to characterize
influence of the noise correlations is the noise intensityR,
i.e., the integral of the correlation functionr (t).

We have shown that the condition 0,R,` corresponds
to normal diffusion, and the conditionsR5` andR50 cor-
respond to anomalous diffusion. IfR5`, diffusion is faster
than normal diffusion, and ifR50 it is slower. The spectra
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density S(v) of the ~wide-sense! stationary random force
f (t) is given by

S~v!5E
2`

`

e2 ivtr ~ t !dt52E
0

`

r ~ t !cos~vt !dt. ~5.1!

Therefore,S(0)52R, and external noise with very stron
coherence,S(v)→` asv→0, gives rise to diffusion faste
than normal, whereas external noise with very weak coh
ence,S(v)→0 asv→0, leads to diffusion slower than nor
mal. In the case of fast diffusion, ast→`, the mean-square
displacementsx

2(t) grows faster thant but slower thant2,
and in the case of slow diffusion slower thant. The condi-
tionsR5` andR50 are necessary but not sufficient for th
existence of superdiffusion and subdiffusion, respective
Specifically, forR5` power-logarithmic diffusion can oc
cur and forR50 logarithmic diffusion. Our results show tha
a long time-tail decay of positive correlations of the no
gives rise to fast diffusion, and a balance of contributio
from regions of positive and negative correlations to sl
diffusion. Also, if R50, stochastic localization of particle
can occur, wheresx

2(t) is finite for all times.
For undamped particles, diffusion ist2 times faster than

for damped particles. The conditionsx
2(t);t3 as t→` cor-

responds to normal diffusion of undamped particles. Fast
fusion occurs ifR5`, and slow diffusion ifR50, as in the
case of damped particles. The dispersionsx

2(t), as t→`,
grows faster thant3 but slower thant4 for fast diffusion, and
faster thant2 but slower thant3 for slow diffusion.
nd

ys

ev
s.

d

ev

A

r-

.

s

f-

APPENDIX: DERIVATION OF EQ. „2.5…

By introducing the variablesu5t92t19 andv5t91t19 , we
can write Eq.~2.4! for t9>t19 as

S~ t9,t19!5 1
2E

2t19

0

du r~u!E
2u

2t91u
dv

1 1
2E

0

t92t19du r~u!E
u

2t191u
dv

1 1
2E

t92t19

t9
du r~u!E

u

2t92u
dv ~A1!

5E
0

t19du r~u!~ t192u!1E
0

t92t19du r~u!t19

1E
t92t19

t9
du r~u!~ t92u! ~A2!

5E
0

t19du r~u!~ t192u!1E
0

t9
du r~u!~ t92u!

2E
0

t92t19du r~u!~ t92t192u!. ~A3!

Taking into account the definition~2.6!, we obtain Eq.~2.5!
from Eq.~A3!. Equation~2.5! also holds fort9,t19 , since we
haveS(t9,t19)5S(t19 ,t9) according to Eq.~2.4!.
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